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Abstract

The analysis of electrocardiogram data is vital to the healthcare system to improve and monitor health

conditions. Existing algorithms are effective in discovering abnormalities in electrocardiogram data

streams but most of these approaches do not focus on the intensity and duration of these anomalies.

In this paper, we propose a new method called alignment of the martingale sequence (AMS) that im-

proves previous approaches using dynamic time warping and particle swarm optimisation to obtain

the optimal parameter that maximises F1. Our proposed method can also estimate the severity and ex-

tent of an abnormal heartbeat rate. Experimental results show that the proposed approach makes some

improvements over the traditional method.
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1. Introduction

Persistent heart failure (PHF) is a dynamic, crippling condition that can lead to cardiac disor-

ders and hospitalisation. Common symptoms of PHF include fatigue, shortness of breath and

peripheral oedema. These symptoms can cause several effects to human health and disrup-

tion in daily life activities [1]. The predicaments caused due to PHF have not only negatively

impacted patients and their loved ones but also the health care system and society generally.

PHF diagnosis is around 2% of the general population in developed nations [2]. The British

heart foundation reckons that heart failure affects around 2% of the UK population [3]. The

ageing demographic, in the developed world, are more inclined to be affected by this disease.

HF increases from 1% among those within the age group of 45 − 55 years old to over 5% in the
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age group from 80 years old above [4].

It is assumed that heartbeat rate plays a key role in the risk of a heart attack. Heart diseases

such as PHF, coronary heart disease, congenital heart disease and congestive heart failure are

the main cause of mortality for men and women in many countries [5]. PHF patients will need

to constantly monitor their heart rate for a sign of irregular behaviour which might be a sign

of potential heart failure. There are several ways by which we can handle or manage the threat

of PHF as stipulated in the guidelines from the European Society of Cardiology [6]. These

procedures include:

• Monitoring of symptoms associated with PHF.

• Self-management of multiple chronic illnesses.

• Educating patients to observe their health conditions and be able to identify illness seri-

ousness.

• Consistent exercises and physical activities.

• Consistent monitoring of the heartbeat for irregular signs.

The recent evolution of microelectronics and sensor technology has led to the development of

many wireless sensor applications which can measure the heartbeat for signs of cardiovascular

diseases [6]. The heart’s rhythm can be measured using signals that are recorded by specialised

devices to identify the normal functioning of the heart through heartbeat or heart rate. Heart

rate is the number of periods the heart beats per minute while heartbeat is one complete pul-

sation of the heart. A normal heart rate for resting adults is within the range of 60 to 100 beats

per minute [7]. A lesser heart rate suggests a more dynamic heart functionality.

Arrhythmia is an abnormal heart rate or rhythm that happens when electric impulses that

originate from hearth beats do not function properly. Arrhythmia might cause concern and can

be life-threatening exhibiting symptoms like shortness of breath, palpitations, fatigue, feeling

dizzy, fainting. The most efficient avenue to diagnose an arrhythmia is through an electrical

recording of the heart rhythm called an electrocardiogram (ECG)[8]. The use of ECG time

series to identify heartbeat makes it possible to intervene in the situation of PHF. Abnormal

heart rate intensity (AHI) is the extent or degree to which the heart rate becomes too slow or

fast in an uncertain way. Abnormal heart rate duration (AHD) is the time or period when the

heart becomes too slow or fast in an uncertain way.

An ECG is a recorded signal that can be used to check your heart’s rhythm and electrical

activity for the diagnosis process. ECGs are one of the primary diagnostic tests to detect cardio-

vascular abnormalities. Using ECG, it is also possible to estimate the dimension and position

of the heart chambers to discover any form of damage in the heart [9].

An anomaly can be informally defined as anything that deviates from a normal standard.
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Mathematically, an anomaly is often perceived as a point that is far away from the mean of a

sequence. Anomaly detection is the discovery of irregularities that are different from the rest

of the time series such as ECG data. ECG time series consist of real quasi-periodic signals and

current approaches will need to learn about the relationship of the sequence before they can

discover anomalies [10]. Identifying abnormalities in the ECG time series is very crucial in the

medical and health area.

Anomaly detection in ECG can be very challenging as a result of heartbeat variation in pa-

tients. Consequently, some heart rate variations might not be life-threatening and this can

produce misleading information that can affect the interpretation of ECG readings. This situa-

tion motivates us to propose a method that uses machine learning techniques to detect severe

heart rates for quick intervention to save lives.

Recently, diverse methods have been created for analysing ECG signals. However, the com-

plexity of these techniques has limited the performance of identifying anomalies in heart rate

[11]. Most of these techniques can detect irregularities in heart rate but are also unable to com-

pletely isolate noise interference in ECG signal [12]. This situation gives rise to a false alarm

rate (FAR). In this work, we are developing an algorithm that will discover abnormalities in

ECG signals. Unlike most successful change detection approaches, our proposed approach can

detect change intensity and duration in heart rate that occurs in ECG sequence. Our method

uses the martingale frame to reduce the impact of noise interference in the ECG data set. The

rationale behind our suggested technique is that it allows PHF patients and medical staff to

monitor their heart rate intensity and abnormal duration to diagnose early signs of arrhyth-

mia. Also, our method can be useful in measuring the heart rate to evaluate effort between

several exercises or workout sessions.

To handle any challenges of similarity measures of ECG signal points produced by our al-

gorithm, we implement dynamic time warping (DTW). DTW [13] is a popular technique that

locates the optimal alignment between two sequences under certain conditions. The optimisa-

tion and DTW concepts are further discussed in Section 3 respectively.

To obtain the optimal parameters that improve the performance of the algorithm, we use

particle swarm optimisation (PSO). PSO [14] is a stochastic optimisation technique that is mo-

tivated by the intuitive mutual(swarm) behaviour of animals such as a swarm of bees, a flock of

birds and schools of fish. We use the PSO approach to identify the parameter values that max-

imise 𝐹1. The method explores or searches simultaneously through a group of individuals or

particles to obtain the optimum value in a swarm whose trajectories are modified by stochastic

and a deterministic component [15]. For this study, we use PSO rather than genetic algorithm

(GA) [16] due to the following reasons:

• PSO can be adjusted to handle complex problems.

• PSO is computationally more efficient concerning speed and memory requirements [17].

PSOwill be further explained in Section 3. In this work, we use the PSO to obtain the optimal
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fitness function value using F1. We use F1 instead of accuracy as it takes into consideration

both false negatives and false positives. F1 is a better metric to evaluate sequences where

imbalance classes exist. We benchmark our proposed technique with traditional methods and

obtain competitive prediction outcomes.

The paper structure is as follows: In section 2, we review the latest work done on identifying

changes in ECG data. In Section 3, we introduce our novel approaches. In section 4, we show

our experimental results and compare them with the existing Martingale algorithm. We finish

the paper in section 5 discussing the results that we got and the next steps that we will take in

the research.

2. Related work

In the last decades, new change detection techniques have been developed to discover transi-

tions in a human heartbeat using ECGdata. For instance, Varon et al. [18] proposed amethodol-

ogy for the instinctive discovery of sleep apnea from an ECG sequence. The approach uses two

novel well-known features common in heart variability analysis: standard deviation and serial

correlation coefficients of the interval between heartbeats. The first feature utilises the main

components of QRS complexes(the spread of impulses through the ventricles of the heart) that

represent abnormalities in their structure as a result of increased sympathetic activity during

sleep apnea conditions. The second novel feature captures the information distributed between

the respiration system and heart rate using orthogonal subspace projections. The respiratory

information is obtained using the ECG signal through three robust algorithms. The features

use the radial basis function (RBF) kernel implemented as input to the least-square support ma-

chine classifier. Two independent ECG data sets which include hypopneas and apnea points

were analysed. The algorithm can achieve a comparable result of 100% accuracy rate in classi-

fying sleep apnea and also able to determine the contamination level of each ECG timing.

The rise in electronic medical observation and sensors applications such as electrocardio-

grams are becoming available as a result of the big data revolution. However, most of these

signal recorded remains unlabelled thereby making anomaly detection challenging. This situ-

ation motivates Pereira et al. [19] to introduce an unsupervised method that uses a technique

to learn about the features of the ECG sequence to discover any abnormality using numerous

detection strategies. Experimental result shows that the suggested method can learn demon-

strative representations of ECG time series to discover divergence with scores that outperform

conventional supervised and unsupervised approaches respectively.

High false alarm rates (FAR) occur in ECG signals as a result of the inability to distinguish be-

tween actual ECG signals and ECG artefacts (electromagnetic alterations that are unrelated to

cardiac impulse activities) as both signals are similar in terms of structure and frequency. These

characteristics lead to a misconception of ECG readings. Sivaraks et al. [20] were motivated by

this fact to propose a robust approach that can discover abnormalities while minimising FAR
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in ECG data. The method design takes into consideration the cardiologist and motif identifica-

tion approaches. Every step of the algorithm complies with the review of a cardiologist. The

approach can make use of both single-lead and multi-lead ECGs respectively. Experimental

results show that the algorithm can achieve 100% on accuracy on detection, specificity, sen-

sitivity and positive predictive with 0% FAR. The outcome depicts that the suggested method

performs better compared to conventional anomaly detection techniques.

Conventional change point detection approaches can discover changes in electromagnetic

(EM) signals but are often limited by the issue of noise interference. This situation motivates

Etumusei et al. [21] to propose two approaches that utilise the martingale framework to dis-

cover abnormalities in EM signals. The methods can isolate noise and makes use of cross-

validation to optimise its parameters. Experimental result shows the proposed algorithmmakes

improvements over the previous technique within the martingale framework.

In this paper, we present a novel method based on enhancing the performance of our pre-

vious work [21] known as the moving median of the martingale sequence. The proposed

method is known as the alignment of the moving median of the martingale sequence (AMS).

The method improves the previous moving median of the martingale sequence (MMMS) by

applying time warping and optimisation techniques to enhance performance for discovering

abnormality in ECG time series. This technique is applied to analyse ECG sequences. Our

unsupervised method uses previous methods such as randomised power martingale to distin-

guish between normal and anomalous data points by learning the ECG sequences. To make

this anomalous data point outstanding, ourmethod uses themovingmedian approach to isolate

ECG artefacts (noise). We apply dynamic time warping (DTW) to align any displaced points

and PSO to optimise the algorithm parameters. We compare the suggested approach results

with the original methods called the randomised power martingale (RPM) and running aver-

age of the martingale sequence (RAS) respectively. These methods will be discussed in detail in

Section 3. We have summarised the proposed system in Figure 1. The next paragraph explains

the heart rate model.

3. Heart rate Model

This Section discusses the pre-processing approach used and the model for discovering anoma-

lies in ECG sequence.

3.1. Data pre-processing

The first step to implement the proposed algorithm involves obtaining accelerometry data from

a Shimmer wireless sensor platform (SWSP) [22] attached to healthy participants. The partic-

ipants perform activities in different scenarios within a home environment (for more details

about this data set see [23]). For each scenario, ECG and accelerometer signals were captured
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Figure 1: Proposed system

before, during and after each activity of the participants. The data obtained are streamed to

a computer via the IEEE 802.15.1 Bluetooth communication protocol using the BioMOBIUS

windows-based application development platform[23][24]. To process the ECG data captured,

a fast Fourier transform (FFT) [25][23] is used to transform the ECG signal to determine its

frequency components. Secondly, we use R-peak filtering techniques to remove and filter low-

frequency noise. Finally, the average per interval heart rate for every activity is computed

obtained after the filtering process. The labelled ECG data obtained from the sit to stand sce-

nario can be seen in Figure 5 which also shows the changes, their duration and intensity.

3.2. Martingale technique

The following techniques aim to discover abnormal changes, change intensity and duration in

ECG time series. In the next paragraphs, we shall focus on the martingale concept.

A martingale is a succession of a stochastic process, for which, at a specific time, the condi-

tional expectation of the next value given all previous points is equal to the present value.

Definition 1: [26] A sequence of random variables
{
𝑀𝑖 ∶ 0 ≤ 𝑖 < ∞

}
is a martingale

regarding the sequence of random variables
{
𝑋𝑖 ∶ 0 ≤ 𝑖 < ∞

}
, if for all 𝑖 ≥ 0, the following

conditions hold:

• The martingale 𝑀𝑖 is a function that is measurable of 𝑋0, 𝑋1, ..., 𝑋𝑖 ,

• 𝐸(∣ 𝑀𝑖 ∣) < ∞ and
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• 𝐸(𝑀𝑛+1|𝑋0, ..., 𝑋𝑛) = 𝑀𝑛.

Ho andWechsler [26] suggested a fundamental unit of themartingale framework by defining

a metric called strangeness. Strangeness measures how much a new data point diverges from

the previous one in a time series.

Let us consider a sequence 𝑍 = ı𝑧1, ..., 𝑧𝑖−1#, where there is a newly recorded point 𝑧𝑖 . Let

us also consider that the data points in 𝑍 have been clustered into 𝑘 disjoint sets 𝑌1, ..., 𝑌𝑘 , (𝑘 ≤
𝑖 − 1) [27].

Definition 2: The strangeness of 𝑧𝑖 is defined as

𝑠𝑖 = 𝑠(𝑍, 𝑧𝑖) =∥ 𝑧𝑖 − 𝐶𝑟 ∥ , (1)

where 𝐶𝑟 is the centroid of the cluster 𝑌𝑟 , for some 𝑟 ∈ {1, ..., 𝑘} such that 𝑧𝑖 ∈ 𝑌𝑟 . ∥ . ∥ denotes
the chosen distance.

The strangeness of 𝑧𝑖 is used to compute a "probability" time series where its points are

named 𝑝𝑖 . If for 𝑗 = 1, 2, ..., 𝑖, 𝑠𝑗 is the strangeness of 𝑧𝑗 and 𝜃𝑖 is a fixed value in [0, 1] [26][28],
𝑝𝑖 is computed as follows:

𝑝𝑖(𝑍 ∪ 𝑧𝑖 , 𝜃𝑖) = ♯
{
𝑗 ∶ 𝑠𝑗 > 𝑠𝑖

}
+ 𝜃𝑖♯

{
𝑗 ∶ 𝑠𝑗 = 𝑠𝑖

}
𝑖

. (2)

Intuitively, 𝑝𝑖 measures the probability of being more estrange than 𝑧𝑖 . It should be noted

that 𝑝𝑖 can be seen as an unusual case of the statistical notion of p-value[26]. The set of 𝑝𝑖
can be used to compute a new random variable that will create a new sequence known as the

randomised power martingale.

Definition 3: [26] The randomised power martingale (RPM) is indexed by 𝜖 ∈ [0, 1] defined
at each time-point as

𝑀 (𝜖)
𝑛 =

𝑛

∏
𝑖=1

(𝜖𝑝𝑖𝜖−1). (3)

Fixed an 𝜖 ∈ [0, 1], once we have computed𝑀
(𝜖)
𝑛 , the model will detect a change in the 𝑛 − 𝑡ℎ

timepoint if

𝑀 (𝜖)
𝑛 > 𝑡, (4)

where the threshold t is chosen in a probabilistic way based on Dobb’s Inequality [26].

In the following section, we introduce an approach that aims to improve the overall perfor-

mance of the previously described martingale approach.
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3.3. Moving Median of a martingale sequence (MMMS)

A moving median (MM) is a robust and effective smoothing technique to detect a transition

in a data stream [29]. The moving median computes the median of a sequence using a sliding

window. For our method, once we have computed the martingale sequence, we apply MM

over that sequence to smooth the martingale points. We use median, rather than a mean for

the analysis of ECG time series because it is more robust against extreme values as it is not de-

termined by the individual points of the ECG sequence, but only by their order. This behaviour

suggests that the median tends to smooth the time series, thereby, reducing the effect of noise.

Let us consider a martingale succession  =
{𝑀𝑖 ∶ 0 ≤ 𝑖 < ∞

}
and fix a window length

𝑙 > 0. We define 𝐷𝑘 as the MM of the 𝑘 − 𝑡ℎ window in martingale sequence. Although we

could use this technique to look for anomalies in the data, we will refine the sequence𝐷𝑘 before
using it for that purpose. In the following Section, we will describe dynamic time warping.

3.4. Moving Average of the Martingale Sequence (MAS)

For our baseline method, we implement the moving average technique on the martingale se-

quence. The moving average computes the mean of a sequence using a sliding window. The

moving average is given as;

𝑀𝐴𝑛 = 𝑀𝑛−𝑘+1 +𝑀𝑛−𝑘+2 + ... +𝑀𝑛
𝑘 , (5)

𝑀𝐴𝑛 = 1
𝑘

𝑛
∑

𝑖=𝑛−𝑘+1
𝑀𝑖 , (6)

where𝑀𝑖 is the martingale point and 𝑛 = is the length of the data sequence. In a later stage,

we will apply PSO to the 𝑀𝐴𝑛 sequence to obtain the optimal parameter that maximises F1.

3.5. Dynamic time warping (DTW)

Heart rate undergoes minor changes between successive heartbeats and thereby produces a

linear functional to ECG readings. One way of handling this challenge is to use dynamic time

warping to specify a nonlinear heart rhythm [30][31]. Dynamic time warping (DTW)measures

the affinity between the original ECG data set and our proposed algorithm output. DTW dis-

covers theminimumpath by producing a non-linear alignment between the two sequences[32].

DTW computes the optimal match between the two sequences with certain rules and condi-

tions:
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• Each one of the indexes from the initial sequence must correspond with one or more

indices of the other succession and vice versa

• The first index of the initial time series must match with the first index of the other

sequence

• The last index from the first time series must be similar to the last index of the other

succession

• The aligning of the indices from the first sequence to indices from the other sequence

must always be increasing and not becoming constant or decreasing vice versa. For

instance, if 𝑗 > 𝑖 are indices obtained from the first time-series then there should never

be any two indices 𝑙 > 𝑁 in such as way that 𝑖 corresponds with index 𝑙 and index 𝑗 is
matched to index N and vice versa

Given two sequences X and Y, we will say that each tuple (i,j) is the alignment between 𝑋 [𝑖]
and 𝑌 [𝑗]. We define the mapping path 𝐷𝑆 as the map that minimises the distance between the

sequences 𝑋 and 𝑌 . We implement DTW on 𝑀𝑀𝑀𝑆 and the original ECG sequence to obtain

a new succession known as the aligned moving median of the martingale sequence (𝐴𝑀𝑆). The
process is repeated using the 𝑀𝐴𝑆 and the original ECG sequence to obtain a new sequence

known as the aligned moving average of the martingale sequence (𝐴𝑀𝐴𝑆) respectively. In the

next Section, we discuss the implementation of the PSO on our new sequences.

3.6. PSO optimisation

PSO algorithm is an optimisation technique that uses a search process based on swarm explo-

ration. In this type of exploration, each individual retains the optimal location in the swarm.

For each generation, the information accumulated by the particle is then used to adapt the new

location of the particle. The particles are constantly evolving in a multi-dimensional search

capacity until an optimal condition is found. Each particle adjusts its position depending on

its present velocity, its preceding best location (𝑃𝑏𝑒𝑠𝑡 ) and the global best location (𝐺𝑏𝑒𝑠𝑡 ) of the
whole swarm.

To tune and explore the direction of the swamp, the velocity and location of the particles at

iteration 𝑘 are accomplished using the following steps:

1. Particles are initialised with arbitrary location and velocities according to the search

range or space

2. Estimation of each particle using the fitness function

3. Particle are updated with individual best and global best fitness values and their location

4. The candidate solution’s location and velocity are renewed

5. If the convergence criterion is satisfied then the algorithm is halted and the final solution

output is presented otherwise the process will progress to step 2
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Table 1

PSO component values

Parameters value

InertiaRange [0.10000, 1.1000]

InitialSwarmSpan 200

MaxIterations 200 * NumberOfVariables

MaxStallIterations 20

MinNeighboursFraction 0.250

SwarmSize: 100

SelfAdjustmentWeight 1.4900

SocialAdjustmentWeights 1.4900

PSO locates the optimal parameters (𝜖, window size) using fitness function (FF) to maximize

F1. The fitness function is given as:

𝐹1𝑚𝑎𝑥 = 𝑚𝑎𝑥(𝜖,𝑤𝑖𝑛𝑑𝑜𝑤𝑠𝑖𝑧𝑒)(𝐹1(𝐴𝑀𝑆)), (7)

where 𝜖 ranges from 0 to 1 and window size from 2 to 20 for each activity.

PSO components implemented to maximise the fitness function are shown in Table 1. PSO

implementations on the methods RPM, AMS, AMAS will be called RPM(PSO), AMS(PSO) and

AMAS(POS) respectively. Furthermore, the proposed approach is illustrated in Figure 2.

3.7. Threshold computation

While Ho and Weschler [26] proposed a probabilistic way of computing threshold, we suggest

a threshold based on the median absolute deviation (MAD) of the martingale sequence. MAD

is a robust technique for analysing ECG time series because it measures the variability of the

univariate ECG points. For a univariate sequence, 𝑆 = ı𝑆1, 𝑆2, ..., 𝑆𝑛# (in our case, we use the

new PSO sequences) MAD is the median of the absolute deviations of the sequence. MAD is

given as follows:

𝑀𝐴𝐷(𝑆) = 𝑚𝑒𝑑𝑖𝑎𝑛(ı|𝑆𝑖 − 𝑆|, 𝑖 = 1, ...𝑛#), (8)

where 𝑆 = 𝑚𝑒𝑑𝑖𝑎𝑛(𝑆). MAD shows how spread out the data is. Ley et al. [33] proposed,

based on outlier detection, a threshold for change detection of 𝑀𝐸 ±𝑀𝑒𝐴𝐷, where 𝑀𝐸 is the

mean of the data points and𝑀𝑒𝐴𝐷 is the mean absolute deviation. We used a similar approach

using the median to compute a threshold 𝑡 for our methods. Therefore, this model will detect

a change when :

𝐻𝑘 ≥ 𝑡. (9)
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Figure 2: The algorithm

where 𝐻𝑘 can represent RPM(PSO), AMS(PSO) and AMAS(PSO). If 𝐻𝑘 exceeds the given

threshold 𝑡 , a change has been detected. When the analysis of data of 𝐷𝑘 is finalised, the

algorithm is restarted.

The evaluation performance for the approaches is measured using robust evaluation metrics

(EM)[34] such as accuracy, precision, recall(sensitivity), harmonic mean (𝐹1).

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁 ∗ 100, 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝑇𝑃
𝑇𝑃 + 𝐹𝑃 ∗ 100,

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁 ∗ 100, 𝐹1𝑠𝑐𝑜𝑟𝑒 = 2 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 100,

𝑆𝑝𝑒𝑐𝑖𝑓 𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃 ∗ 100,

where 𝑇𝑃, 𝑇𝑁 , 𝐹𝑃, 𝐹𝑁 are true positive, true negative, false positive and false negative re-

spectively. The performance metric provides a proper estimation of the suggested method,

especially on imbalanced time series [35].
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Figure 3: PSO iteration using AMS method
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Figure 4: PSO iteration using AMAS method

Table 2

Confusion matrix using optimised parameters for training set

Approach Training set 𝜖 window size TP TN FP FN

RPM(PSO) N1 0.9 - 10.0(63.0%) 35.0(83.3%) 17.0(63.0%) 7.0(16.7%)
AMAS(PSO) N1 0.9285 19.0 26.0(96.3%) 30.0(71.4%) 1.0(3.7%) 12(28.6%)
AMS(PSO) N1 0.5741 19.0 23.0(85.2%) 42.0(100.0%) 04(14.8%) 0.0(0.0%)

3.8. Abnormal heart rate intensity and duration

Our proposed method can measure the abnormal heart rate intensity (AHI) and abnormal heart

rate duration (AHD). To compute the AHI and AHD, we first find the threshold and then sub-

tract it from the highest algorithm output point. The HAI is given as:

𝐴𝐻𝐼 = 𝑀 − 𝑇 , (10)

where 𝑀 = 𝑚𝑎𝑥ı𝐻𝑘 ∣ 𝑘 = 1, ..., 𝑛#, being 𝐻𝑘 the output time series of the used algorithm and

𝑇 as the used threshold. Furthermore, we can also compute the duration of the abnormality

in heart rate data by computing the time (sec) of the changes. AHD is the length of time in

seconds, the changes take place. AHD is given as:

𝐴𝐻𝐷 = 𝑆𝑒𝑐𝑜𝑛𝑑𝑠 (𝑇𝑃 ), (11)

In the next Section, we shall discuss the experimental results of our proposed algorithm.

4. Experimental results

The section exposes an overview of the different approaches adopted to detect anomalies in

the ECG data set. The ECG data used for this experiment was discussed in Section 3.
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Figure 5: Original and aligned Signals
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Figure 6: Test data change detection
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Table 3

Confusion matrix using optimised parameters for test set

Approach Test set 𝜖 window size TP TN FP FN

RPM(PSO) N2 0.9 - 05(45.5%) 62(84.9%) 06(54.5%) 11(15.1%)
AMAS(PSO) N2 0.9285 19.0 11(100.0%) 53(72.6%) 00(0.0%) 20(27.4%)
AMS(PSO) N2 0.5741 19.0 11(100.0%) 72(98.6%) 00(0.0%) 01(1.4%)

4.1. Cross validation technique

To show the rational potential, we evaluate the proposed method using different training (𝑁 1)
and test set (𝑁 2). Both datasets are obtained from an individual performing similar activities.

The dataset captured the participant heart rates. Our objective is to detect when there is a

change in these heart rates and the actual duration of this change.

We implement our proposed method to obtain the optimal parameters. In this specific work,

we used 𝜖 and the window size as the parameters to be optimised. This technique is used to
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Table 4

Evaluation metrics of the proposed and previous approaches

Approaches N1 N2 𝜖 window size Sensitivity(%) Specificity(%) Accuracy(%) Precision(%) F1-Score(%)
RPM(PSO) 70 84 0.9 - 41.3[37.04, 45.5] 84.1[83.3, 84.9] 72.5[65.2, 79.8] 45.1[58.8, 31.3] 41.3[45.5, 37.0]

AMAS(PSO) 70 84 0.9285 19.0 97.7[96.3, 99.0] 72.0[71.4, 72.6] 78.7[81.2, 76.2] 52.0[68.4, 35.5] 66.0[80.0, 52.0]

AMS(PSO) 70 84 0.5741 19.0 92.1[85.2, 99.0] 98.8[99.0, 98.6] 96.6[94.2, 98.9] 95.4[99.0, 91.7] 93.9[92.0, 95.7]

Table 5

Estimation of algorithm performance

Approach Ave. iteration time AHI AHD

RPM(PSO) 0.3801 0.2716 RPM 5(sec)

AMAS(PSO) 0.5236 0.0349 RAS 11(sec)

AMS(PSO) 0.4329 1.5275 AMS 11(sec)

Table 6

Evaluation performance comparison

Approach Accuracy(%) Sensitivity(%) Specificity(%) Precision(%) F1(%)
RPM(PSO) 72.5 41.3 84.1 45.1 41.3

AMAS(PSO) 78.7 97.1 72.0 52.0 66.0

AMS(PSO) 96.6 92.1 98.8 95.4 93.9

analyse both the previous and newly proposed algorithms, that is RPM, AMS, AMAS.

Once we found optimal parameters for our data set N1, we used that configuration to com-

pute the evaluation metrics for N2. Both confusion matrices can be found in TABLE 2 and 3. In

addition, the information from the confusionmatrices is then used to compute the performance

metrics. This information can be seen in TABLE 4.

4.2. Performance of ECG detection algorithm

Our proposed algorithm (TABLE 4) produces better results compared to conventional approaches

such as RPM(PSO) and AMAS(PSO) respectively. These comparison are summarised (TABLE

6) for better evaluation. The performance comparison (TABLE 6) shows that the suggested

approach gives an accuracy rate of over 15% compared that of AMAS(PSO) and RPM(PSO)

independently. Also, our proposed approach gives a specificity of over 10% compared to the

AMAS(PSO) and RPM(PSO) independently. Overall our suggested technique produces a prefer-

able output of over 40% in terms of precision and F1-score. However, the AMAS(PSO) method

is slightly sensitive compared to our proposed approach. This can be attributed to slightly

higher TP detected by the AMAS(PSO). This might not be a major issue at the moment, but we

aim to address it further in future work. Our proposed algorithm (TABLE 5) also produces a

better AHI (1.5275 AMS) and a lower average iteration run time of 0.4329 seconds. The AHD
time for our proposed AMS method is 11 seconds greater than that of the RPM method.
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5. Conclusion and future work

This paper discusses persistent heart failure and its impacts on humanity. This predicament

inspires us to introduce a method (that uses the martingale framework) to detect abnormality

in heart rate measuring devices such as ECG. Experimental results show that our proposed

technique outperforms previous martingale approaches. Furthermore, the proposed algorithm

canmeasure the heart rate intensity and duration of abnormality in ECG sequence. Futurework

is required to confirm this hypothesis using big data streams in specific populations areas and

age categories especially the elderly who are more prone to heart failure and attack.
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