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Abstract  

Channel alignment based on the generalized cross correlation with phase transform (GCC-
PHAT) is part of many multichannel speech processing procedures including the channel 

selection procedure based on multichannel cross-correlation coefficients (MCCC). Despite the 

wide application of the GCC-PHAT approach for channel alignment, little has been reported 
on how the choice of reference channel might affect alignment accuracy and subsequent 

processing steps when microphones are coarsely distributed. The present research investigates 

alignment accuracy with random selection of a reference channel in relation to heuristic 
selection of a reference channel using the GCC-PHAT approach for time difference of arrival 

(TDOA) estimation and subsequent MCCC based channel selection. Results show that the 
procedure for reference channel selection effects both: the accuracy of channel alignment as 

well as results of the subsequent channel selection procedure. Findings suggest that the choice 

of reference channel should not be left to chance in distributed microphone arrays in order to 
optimize processing steps following channel alignment. 
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1. Introduction 

In various contexts the auditory information of a scene is recorded by several spatially distributed 

microphones, so called microphone arrays. In film production or sports broadcasting, spaced 

microphone arrays are used to create an immersive audio experience and to separate sound sources of 

interest from ambient noise [1, 2]. Likewise, in conference rooms or lecturing halls microphone arrays 

have proven useful to enhance sound signals that emanate from the current speaker while reducing noise 

from spatially distinct locations. 

The estimation of time differences of arrival (TDOA) of sound signals at different microphones 

forms a critical first step in many techniques employed in microphone array processing for noise 

reduction [3], speaker localization [4, 5], channel selection [6] or speech enhancement [7]. First 

introduced more than half a century ago [8], the generalized cross correlation technique remains a 

widely applied method for TDOA estimation in near field and far-field scenarios [9]. The cross-

correlation technique for TDOA estimation takes two signals as input and finds the time lag between 

the two signals that maximizes the value of the cross-correlation function. In the generalized cross 

correlation technique [8], an additional weighting function, also referred to as filtering, is applied to the 

cross-correlation. This paper focuses on the PHAT-weighting function, a filtering approach that has 

proven particularly useful for TDOA estimation in indoor settings that are characterized by signals with 

different forms of reverb [10]. Throughout the years, research has dedicated much attention on 

expanding and optimizing the GCC-PHAT approach. Only recently, a subband analysis with GCC-

PHAT has yielded improved accuracy in TDOA estimates in relation to the classic approach [11]. To 

date, the GCC-PHAT is widely applied in multichannel signal processing and often constitutes one of 

the first steps when combining multiple signals. Channel alignment based on TDOA estimation with 

                                                      
CERC 2021: Collaborative European Research Conference, September 09–10, 2021, Cork, Ireland 

 ingo.stengel@h-ka.de (I. Stengel); karin.pietruska@h-ka.de (K. Pietruska); matthias.woelfel@h-ka.de (M. Wölfel)  

 
©  2021 Copyright for this paper by its authors. 

Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).  

 CEUR Workshop Proceedings (CEUR-WS.org)  

 

86CERC 2021



Data Processing and Machine Learning

GCC-PHAT constitutes also the first step of the multichannel cross-correlation coefficient (MCCC) 

procedure for channel selection first introduced by Kumatani et al. (2011) [6]. 

Selecting a subset of channels of a microphone array for further multichannel processing remains of 

key interest in present research, particularly regarding voice-based assistance systems or conferencing 

systems that integrate signals received by a dispersed microphone array. As research has shown, adding 

more channels, particularly when they have a low signal to noise ratio, may not improve but instead 

substantially decrease the performance of an automatic speech recognition system [12]. Throughout the 

last decades, different approaches for channel selection have been introduced including classic signal 

to noise ratio estimation [13], class separability of phonemes [14], multichannel cross-correlation 

coefficients [6], cepstral distance [15] and neural network posterior probability models [16]. Notably, 

channel alignment remains an integral processing step in many of these multichannel approaches also 

including end-to-end ASR models, particularly with masked based neural beamforming [17]. 

We focus on the MCCC approach for channel selection, due to a suggested decrease in 

computational complexity compared to the use of an automatic speech recognizer (ASR) for channel 

selection [6, 14] and its use of the GCC-PHAT approach for channel alignment [6]. The MCCC 

approach aims at discarding low quality, noisy channels by building on the assumption that noise is 

uncorrelated to the speech signal of interest. Setting information on the spatial correlation among signals 

in relation to their variance, the MCCC algorithm implements a channel selection procedure that in 

combination with beamforming has yielded similar word error rates compared to a close distance 

microphone while focusing on computational efficiency. Channel alignment is implemented in the first 

processing step of the MCCC algorithm in order to optimize the accuracy and computational efficiency 

of the subsequently computed spatial correlations among channels [6]. Despite the wide use of the 

GCC-PHAT in the first step of channel alignment, little is known on how the choice of reference 

channel affects alignment accuracy and subsequent processing steps. This is of particular interest for 

microphone arrays that are spaced coarsely across the recording room with variable inter-microphone 

distances. This coarse setting differs profoundly from much of previous research that focused on linear, 

evenly spaced microphone arrays [18]. 

The present research aimed at investigating the effect of the choice of reference channel on TDOA 

accuracy for channel alignment based on the GCC-PHAT approach. Moreover, follow-up effects of the 

choice of reference channel for alignment on the overall results of the MCCC based channel selection 

procedure were examined. Random choice of reference channel was compared to a choice of reference 

channel based on a delay heuristic. Short-Time Objective Intelligibility (STOI)  scores for each channel 

served as an independent speech intelligibility measure for the achieved channel rankings [19].  The 

effects were examined on data recorded in indoor settings with microphones distributed on a table or 

stand. The microphone locations were similar to a distribution that can be expected in ad-hoc 

microphone arrays when recording business meetings or seminars with the smartphones of meeting 

participants. The use of real data was critical in the approach as synthetic data are known to generate 

results that are often not replicable in realistic indoor settings.  

2. Methods 

2.1. Data 

In order to investigate the present research questions, we aimed at using data recorded in indoor 

settings with unobstructed microphones spaced across a table or located on a stand. The VOiCES corpus 

provides recording conditions that fulfill these requirements along with spatial information that allowed 

the approximation of inter-microphone distances of a subset of the microphones used in the recordings 

[20].  We constrained the analysis to data recorded in room 3 (size: 7.6 by 7.6 m) with a foreground 

loudspeaker angle of 90 degrees. In the 90 degrees position, the loudspeaker is in line with the 

microphones of interest (azimuth angle = -90 degrees), causing a maximal time delay between 

subsequent microphones. None of the distractor noise loudspeakers were active. Prerecorded speech 

from LibriVox recordings was played by the foreground loudspeaker in room 3 equipped with basic 

furniture including a table, chairs, a shelf as well as a refrigerator. 20 microphones of different type 

(studio microphones, lavalier microphones, MEM microphones) were placed at different locations 

within the room.  In the present paper, we constrained the microphones included to microphones that 
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were unobstructed, positioned either on a table or stand and located in front of the foreground speaker 

box. Inter-microphone distances were approximated by taking the difference scores of the indicated 

distance of each microphone to the foreground speaker box. Table 1 lists the included 7 microphones 

with information on the type of microphone, their location with respect to the foreground speaker box. 

Data were recorded with a PreSonus StudioLive RML32AI digital mixer and PreSonus Capture 

recording software and all channels were sampled synchronously with a sampling frequency of 16 kHz 

[20]. Table 2 and Table 3 depict the approximated inter-microphone distances as well as the expected 

differences in TDOA values in terms of samples given a sampling frequency of 16 kHz. 

 

Table 1 

Type, model and location of microphones included in the analysis. Microphone model and location 

descriptions are based on the documentation of the VOiCES corpus [20] 

ID Type  Model Location  

01 studio SHURE SM58 close on table 

02 lavalier AKG 417L close on table 

03 studio SHURE SM58 mid distance on table 

04 lavalier AKG 417L mid distance table  

05 studio SHURE SM58 far distance on stand 

06 lavalier AKG 417L far distance on stand 

16 bar ATR4697 mid distance on table 

 

Table 2 

Approximated inter-microphone distances in centimeters based on the given distance information of 

each microphone to the foreground speaker box. Height differences are not adequately represented 

in the calculated inter-microphone distances. Distance values in the original VOiCES corpus are 

indicated in inches without positions after the decimal point. Indicated inter-microphone distances 

are therefore broad approximations.  

 ID 01 ID 02 ID 03 ID 04  ID 05 ID 06  ID 16 

ID 01 0 0 201 201 544 544 104 

ID 02  0 0 201 201 544 544 104 

ID 03 201 201 0 0 343 343 97 

ID 04 201 201 0 0 343 343 97 

ID 05 544 544 343 343 0 0 439 

ID 06 544 544 343 343 0 0 439 

ID 16 104 104 97 97 439 439 0 

 

Table 3 

Expected inter-microphone delays in samples based on the approximated inter-microphone distances 

and a sampling frequency of 16 kHz. Positive difference values indicate that the respective channel in 

the column is delayed with respect to the reference microphone ID denoted by the row label. 

Conversely, negative values indicate that the channel denoted by the column label was located more 

closely to the sound and was therefore ahead in time compared to the channel denoted by the row 

label.   

 ID 01 ID 02 ID 03 ID 04  ID 05 ID 06  ID 16 

ID 01 0 0 94 94 253 253 49 

ID 02  0 0 94 94 253 253 49 

ID 03 -94 -94 0 0 160 160 -45 

ID 04 -94 -94 0 0 160 160 -45 

ID 05 -253 -253 -160 -160 0 0 -205 

ID 06 -253 -253 -160 -160 0 0 -205 

ID 16 -49 -49 45 45 205 205 0 
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2.2. Analysis 1: Reference Channel on TDOA 

This first analysis investigated the effect of the choice of reference channel on the accuracy of 

channel alignment. Time differences of arrival (TDOA) for each channel with respect to a chosen 

reference channel were estimated with the generalized cross-correlation with PHAT weighting (GCC-

PHAT).  First introduced by Knapp and Karter (1976) [8], the generalized cross-correlation function 

denoted by Rkm(τ) takes two microphone signals k, m as an input and computes the cross-correlation of 

the filtered versions of these two input signals. When applying the PHAT weighting, these filters consist 

of the phat weighting function denoted by ψkm(ω) as described by the following equations:   

 

 
 

(1) 

 

(2) 

 

 

 

The maximum of Rkm(τ) is the lag value estimated by the GCC-PHAT function that corresponds to 

the relative delay between the input signals k, m.  

 τkm� = argmaxRkm (τ) (3) 

 

 

In order to examine the effect of the choice of reference channel on alignment accuracy, random 

selection of one reference channel was compared to the selection of a reference channel based on a 

delay heuristic. Let k be the total number of channels. The delay heuristic attempts to estimate the 

channel located closest to the sound source by taking each channel kr and computing the relative delays 

of all remaining k-1 channels with regard to channel kr. The result is a delay matrix D of dimension k x 

k, whereby k is equal to the total number of channels. Each row of D contains the GCC-PHAT delay 

estimates τkrkı� in relation to one specific reference channel kr. The delay matrix D is a hollow matrix 

in which the diagonal values are all zeros as the relative delay of a channel kr to itself is always zero.   

 

 

(4) 
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The first row of the delay matrix D contains the estimated time delays τ� of each channel with respect 

to channel 1. The second row of the delay matrix contains the delays of each channel with respect to 

channel 2 up until row k with reference channel k. The value of τ�  is of positive sign when the respective 

channel is delayed to the reference channel of the respective row and negative if it is ahead of the 

reference channel of the respective row. More precisely, if the value of τ�1,2 is of positive sign, the signal 

of channel 2 was delayed with respect to channel 1. The heuristic aims at choosing the channel as the 

reference for the alignment procedure to which all other channels are delayed. Due to the possibility of 

maxima of the generalized cross correlation function Rkm(τ) that might result from signal reflections or 

noise, the TDOA estimate may in some cases fail to reflect the ground truth time difference between 

two channels k,m. The heuristic therefore adopts the channel as reference channel for alignment with 

the maximal number of τ� values of positive sign within the respective delay matrix row. This means, 

based on the GCC-PHAT TDOA estimates, the maximal number of channels are delayed with respect 

to the reference channel.   

 

Delay Heuristic:  

Take each row di* of delay matrix D and compute the sum of the outputs of the sign function for 

each row entry.  

 

 

(5) 

 

Take the index i of the row that maximizes the output of g(di*). This index i denotes the row of delay 

matrix D that contains the delays with respect to the reference channel kref selected by the delay heuristic 

for channel alignment:   

 

 

(6) 

 

2.3. Analysis 2: Reference Channel on MCCC Channel Selection 

The second analysis investigates potential follow-up effects of the choice of reference channel for 

alignment on the results of the channel selection procedure based on the MCCC algorithm [6]. As 

described below, channel alignment based on TDOA estimates by GCC-PHAT constitutes the first step 

of the MCCC channel selection algorithm. Following the alignment procedure, the covariance matrix 

S is computed for each sample to capture the spatial correlations among channels. 

 

 

(7) 

The MCCC score  ρ𝑘𝑘 for a specific sample is calculated by computing the determinant of the 

covariance matrix S and dividing it by the product of the diagonal elements 𝑠𝑠𝑖𝑖2 of S, which denote the 

variance of the signal within the respective channel i.  
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(8) 

 

For detailed mathematical notations, please refer to the paper by Kumatani et al. (2011) [6]. In the 

following, the channel selection algorithm based on MCCC values is briefly summarized:  

1. TDOA estimation based on GCC-PHAT 

2. Channel Alignment of the k signals  

3. Denote all the channels in the search space as Kc  

4. Find set Ks of Kc-1 signals with highest MCCC value 

5. Remove ki that was not included in set of Kc-1 with highest MCCC value from search space 

6. Go to step (3.) if MCCC value of Kc is larger than the MCCC value of the subset Ks, Kc > Ks  

 

The smallest set Ks of channels that can be retained by the algorithm consists of two channels. At 

least two channels are needed to compute a spatial correlation and thus the MCCC value. By saving the 

channels that are excluded in subsequent rounds of the algorithm, we receive a channel ranking from 

worst quality to the two best quality channels as ranked by the MCCC algorithm.   

In the present analysis, for each of the n=128 utterances of the VOiCES corpus, a channel ranking 

based on the MCCC algorithm was computed and compared to the ranking of the channels based on 

the Short-Time Objective Intelligibility (STOI) scores [19]. The STOI score has a range from 0 to 1 

with higher scores representing increased speech intelligibility. Table 4 displays the STOI Scores for 

the first sample utterance for each of the k=7 channels as well as their distance to the foreground 

speaker-box. The LibriSpeech source recordings of the respective utterance served as the non-degraded 

signal for the STOI-score computation. 

 

Table 4 

STOI scores for each channel (=microphone) of sample 1 along with distance of each microphone to 

the foreground speaker. The original LibriVox signal served as the undegraded reference for 

computation of STOI scores. 

Mic ID  Distance to Speaker (cm)  STOI Score  

01 170 0.59 

02 170 0.49 

03 371 0.37 

04 371 0.31 

05 714 0.26 

06 714 0.23 

16 274 0.39 
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3. Results 

3.1. Analysis 1: Reference Channel on TDOA 

The present analysis investigated the effect of a random choice of the reference channel in relation 

to a heuristic choice of reference channel on the accuracy of TDOA estimates based on GCC-PHAT. 

As a measure of accuracy, the difference scores of the computed TDOA values in relation to the 

approximated ground truth values were computed. Ground truth values are defined as the expected 

TDOA in samples given the a priori approximated distances between microphones. Table 5 depicts the 

mean and standard deviation of the difference scores for each channel of the 128 samples in the random 

and heuristic condition of reference channel selection. Results show an increased mean difference score 

and variance in the random condition in relation to the heuristic condition. 

 

Table 5 

Difference scores of the TDOA values in relation to approximated ground truth values for channel 

alignment based on randomly selected reference channel and reference channel based on heuristic. 

Displayed are the mean and standard deviations for each channel of the n=128 samples. 

 Random Selection Heuristic 

MIC ID Mean SD Mean SD 

01 5.4 10.7 1.0 0.0 

02 1.7 1.9 0.0 0.0 

03 5.4 10.3 1.4 1.1 

04 12.3 28.5 0.0 0.0 

05 3.4 1.9 4.0 0.0 

06 27.4 36.8 5.2 2.2 

16 5.7 10.5 0.0 0.0 

 

3.2. Analysis 2: Reference Channel on MCCC Channel Selection  

The second analysis investigated potential follow-up effects of the choice of reference channel 

during the alignment procedure on the channel selection and ranking based on the MCCC algorithm.  

A channel ranking based on the MCCC algorithm was computed for all 128 samples with a reference 

channel randomly chosen during the alignment procedure and a reference channel chosen based on the 

delay heuristic. The resulting MCCC based channel rankings from worst to best quality channels for 

both conditions were compared to the rankings based on STOI scores. As previously described, the 

MCCC algorithm can retain a minimum set of 2 channels during the selection procedure. These two 

channels are ranked as the signals of best quality according to the MCCC algorithm. For the random 

selection of reference channel condition, the number of samples in which the set of the two selected 

channels was identical to the set of the two best quality channels based on the STOI scores was 

decreased with n=33 samples compared to the heuristic condition with n=116 samples. As indicated in 

table 4, STOI scores decreased with increasing distance to the foreground speaker box indicating that 

STOI score rankings adequately captured the effects of signal attenuation and reverb. The 

supplementary material shows the channel rankings for the first 10 samples in the random and heuristic 

condition based on the MCCC algorithm along with the reference channel used for each sample and 

condition. 
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4. Discussion 

Present findings reveal that the choice of reference channel for alignment effects TDOA accuracy 

based on GCC-PHAT. More specifically, random selection of the reference channel was associated 

with increased deviation from ground truth values as well as with increased between sample variability 

of TDOA estimates. In addition, the choice of reference channel for the alignment procedure affected 

results of the subsequent channel selection approach based on MCCCs. Selection of the reference 

channel based on a delay heuristic yielded channel selection results that were congruent with STOI 

scores for the majority of the utterances. In contrast, random selection of a reference channel was 

associated with only 26% of the samples in line with STOI scores. Findings suggest that deviations 

from the ground truth in the alignment procedure as well as the selected reference channel per se might 

affect subsequent spatial covariance computations involved in the MCCC channel ranking approach 

and thus yield selection results that are not optimal for subsequent speech recognition steps in terms of 

speech quality. 

In contrast to previous research that used a linear microphone array with N=64 microphones and 

equal inter-microphone spacings of 2 cm [6, 18], the present research employed only a small subset of 

microphones and these were distributed with inter-microphone distances up to 5 meters. Therefore it is 

to be expected that channel differences between microphones are more pronounced in the present data 

set due increased inter-microphone effects of reverb and sound attenuation. Consequently, when 

optimizing alignment to a remote channel with substantial reverb effects and a decayed source signal, 

the spatial correlation of channels with similar reverb shaded degradations could be enhanced and thus 

confound overall results of the channel ranking.   

Notably, the microphones included in the present work were not of the same kind, but differed in 

terms of their operating principle: dynamic microphones as well as condenser microphones were 

included in the analysis. Although the present number of channels is very limited, findings show a trend 

towards increased variability in TDOA estimates in microphones not only as a function of distance to 

the sound source but also as a function of microphone type in the random selection condition. The 

condenser microphones were associated with increased variability, particularly when they were located 

more remotely from the sound source. It remains up to future research to further investigate these 

tentative findings and also if subband calculations of GCC-PHAT may decrease these effects [11]. 

Recent research focusing on far field speech recognition in noisy and reverberant conditions with 

coarsely distributed microphone arrays has focused increased attention on the choice of reference 

channel. Maximization of cross-correlation coefficients [12] as well as attention-based approaches [17, 

21] have been suggested as strategies for reference channel selection. This is in line with the present 

findings, implying that the choice of reference channel should not be left to chance in environments 

where microphones are more widely distributed and thus record signals that differ more profoundly 

with regard to reverb and attenuation. 

4.1. Limitations 

The spatial accuracy of present calculations was limited by the distance information provided by the 

VOiCES corpus documentation of the corresponding website [20]. Inter-microphone distances were 

broadly approximated by building the difference scores between the given distance information of each 

microphone to the foreground speaker box. Consequently, differences in height were not adequately 

represented in the derived ground truth distances. In addition, distances were indicated in inches without 

decimal points which also limits the accuracy of the present conversions to centimeters. Consequently, 

the present TDOA results of channel alignment were compared to broadly approximated ground truth 

values. Despite this limitation, present results on channel alignment are meaningful in that they do not 

only show an increased deviation from ground truth values when selecting a reference channel 

randomly, but they also show an increased variability in this deviation as compared to a heuristic 

selection of a reference channel.  

Speech recordings of the present data were based on prerecorded LibriVox utterances played by a 

speaker box positioned in the room. This needs to be taken into consideration as spectrograms between 
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recorded speech and real human speakers may differ depending on the recording conditions and thus 

may be distinguishable based on spectral features.    

The number of microphones included in the present calculations was constrained to unobstructed 

microphones that were in line with the speaker box yielding a maximal time delay between subsequent 

microphones. Furthermore, we did not report the results of a third operating type of microphone 

included in the corpus, so called MEM microphones. Initial results with MEM microphone recordings 

used in the corpus could not be related back to the approximated ground truth values and we therefore 

did not include them in the present paper. This was confirmed by written correspondence with one of 

the authors of the VOiCES corpus stating that some of the MEM micrphones had a short delay prior to 

the signal output.  

Finally, the MCCC algorithm was introduced as a channel selection method with suggested 

decreased computational complexity compared to ASR based channel selection approaches [6]. The 

applicability in real-time settings and computational efficiency of this method when combined with a 

heuristic for reference channel selection still remains to be explored.  
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7. Supplementary Material  

 

 

Table S1 

Channel rankings based on MCCCs for condition with heuristic selection of reference channel for 

alignment. Channels are sorted upwards from worst quality to the two best quality channels based on 

MCCC. Columns 6 and 7 denote the two channels that were ranked as best quality channels based on 

the MCCC algorithm. 

 

 Channel ranking: Heuristic Reference Channel Channel 

Alignment  

 Rank 1 Rank 2 Rank 3 Rank 4 Rank 5 Rank 6 Rank 7 Reference 

Channel 

Sample 1  16 4 3 6 5 1 2 2 

Sample 2 16 5 6 4 3 1 2 2 

Sample 3 3 4 16 6 5 1 2 2 

Sample 4 16 4 3 6 5 1 2 2 

Sample 5 16 4 3 6 5 1 2 2 

Sample 6 16 4 3 6 5 1 2 2 

Sample 7 16 6 5 4 3 1 2 2 

Sample 8 16 5 6 4 3 1 2 2 

Sample 9 16 4 3 6 5 1 2 2 

Sample 10 3 4 16 6 5 1 2 2 
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Table S2 

Channel rankings based on MCCCs for condition with random selection of reference channel for 

alignment. Channels are sorted upwards from worst quality to the two best quality channels based on 

MCCC. Columns 6 and 7 denote the two channels that were ranked as best quality channels based on 

the MCCC algorithm. 

 Channel ranking: Random Reference Channel Channel 

Alignment 

 Rank 1 Rank 2 Rank 3 Rank 4 Rank 5 Rank 6 Rank 7 Reference 

Channel 

Sample 1 4 2 3 16 1 5 6 6 

Sample 2 5 6 16 4 3 1 2 1 

Sample 3 2 16 1 6 5 3 4 5 

Sample 4 4 2 3 16 1 5 6 6 

Sample 5 2 6 5 16 1 3 4 4 

Sample 6 16 4 3 6 5 1 2 2 

Sample 7 16 6 5 4 3 1 2 2 

Sample 8 2 16 1 4 3 5 6 6 

Sample 9 16 4 3 6 5 1 2 2 

Sample 10 6 5 16 4 3 1 2 1 
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