
E-Learning and Competences

Splitfed Learning Without Client-Side

Synchronization: Analyzing Client-Side Split

Network Portion Size to Overall Performance

Praveen Joshia, Chandra Thapab, Seyit Camtepeb, Mohammed Hasanuzzamana,
Ted Scullya and Haithem Aflia

a Munster Technological University, Ireland
bCSIRO Data61, Australia

Abstract
Federated Learning (FL), Split Learning (SL), and SplitFed Learning (SFL) are three recent developments

in distributed machine learning that are gaining attention due to their ability to preserve the privacy of

raw data. Thus, they are widely applicable in various domains where data is sensitive, such as large-scale

medical image classification, internet-of-medical-things, and cross-organization phishing email detec-

tion. SFL is developed on the confluence point of FL and SL. It brings the best of FL and SL by providing

parallel client-side machine learning model updates from the FL paradigm and a higher level of model

privacy (while training) by splitting the model between the clients and server coming from SL. However,

SFL has communication and computation overhead at the client-side due to the requirement of client-

side model synchronization. For the resource-constrained client-side, removal of such requirements

is required to gain efficiency in the learning. In this regard, this paper studies SFL without client-side

model synchronization. The resulting architecture is known asMulti-head Split Learning. Our empirical

studies considering the ResNet18 model on MNIST data under IID data distribution among distributed

clients find that Multi-head Split Learning is feasible. Its performance is comparable to the SFL. More-

over, SFL provides only 1%-2% better accuracy than Multi-head Split Learning on the MNIST test set. To

further strengthen our results, we study the Multi-head Split Learning with various client-side model

portions and its impact on the overall performance. To this end, our results find a minimal impact on

the overall performance of the model.
Keywords
Distributed collaborative machine learning, Split learning, Multi-head split learning, Parameter transmission based

distributed machine learning, Privacy preserving machine learning

1. Introduction

In the world of data, the security and privacy of individuals have now become one of the

major concerns. To avoid data misuse, several restrictions such as the General Data Protection

Regulation (GDPR) [1], Personal Data Protection Act (PDP) [2], and Cybersecurity Law of the

People’s Republic (CLPR) of China [3] have been introduced. These regulations are strictly

practiced making data aggregation from distributed devices and regions almost impossible [4].

CERC 2021: Collaborative European Research Conference, September 09–10, 2021, Cork, Ireland

" praveen.joshi@mycit.ie (P. Joshi); chandra.thapa@data61.csiro.au (C. Thapa); seyit.camtepe@data61.csiro.au

(S. Camtepe); Mohammed.Hasanuzzaman@mtu.ie (M. Hasanuzzaman); Ted.Scully@mtu.ie (T. Scully);

Haithem.afli@mtu.ie (H. Afli)

�
© 2021 Copyright for this paper by its authors.
Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR

Workshop
Proceedings

http://ceur-ws.org

ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

188CERC 2021



E-Learning and Competences

To accommodate such restrictions along with the constraints placed by heterogeneous devices,

improvised machine learning (ML) approaches were sought. Federated Learning [5] and Split

Learning [6] are two such ML approaches that enable safeguarding the raw data and offload

computations at the central server by pushing a part of the computation to the end devices.

Federated learning (FL) leverages the distributed resources to train an ML model collabo-

ratively. More precisely, in FL, multiple devices collaboratively offer resources to train the

ML model while keeping the raw data to themselves, as in no raw data leaves the place of

its origin [4]. The main drawbacks of FL are two folds. Firstly, training a large ML model in

resource-constrained end devices is difficult [7]. Secondly, all participating end devices and the

server has the full trained model. This does not preserve the model privacy while training like

in split learning [8].

To overcome these drawbacks, Split Learning (SL) enables model split and training the split

model portions collaboratively at the client-side and the server-side separately [9]. The clients

and the server never have access to the model updates (gradients) of each other’s model portion

once the training starts. This way, SL enables training large models in an environment with

low-end devices such as internet-of-things and preserves the model’s privacy while training.

Also, it keeps the raw data to its origin (the analyst has no access to the raw data at all times).

However, at a time, SL considers only one client and the server while training. This forces

other clients to be idle and wait for their turn to train with the server [8].

To mitigate the drawback of FL having a lower level of model privacy while training and

the inability of SL to train the ML model in parallel, specifically among the clients, the SplitFed

learning (SFL) is recently proposed [8, 10]. SFL combines the best of the FL and SL. In this

approach, an ML model is split between the client and the server (like in SL). In contrast to

SL, multiple identical split of ML model, i.e., the client-side model portion, is shared across

the clients. The server-side model portion is provided to the server. In each forward pass, all

clients perform the forward propagation in parallel and independently. Then the activation

vectors of the end layer (client-side model portion) are passed to the server. The server then

processes the forward and backpropagation for its server-side model on the activation vectors.

In backpropagation, the server returns the respective gradients of their activation vectors to the

clients. Afterward, each client performs the backpropagation on the gradients they received

from the server. After each forward and backward pass, all client-side models and server-side

models aggregate their weights and form the one global model, specifically in SplitFedV1. The

aggregation is done independently at the client-side (by using fed server) and server-side. In

another version of the SFL called SplitFedV2, the authors changed the training setting for the

server-side model. Instead of aggregating the server-side model at each epoch, the server keeps

training one server-side model with the activation vectors from all the clients.

Despite the improvements in SFL, model synchronization is needed at the client-side that is

obtained through model aggregation and sharing. This is done to make the global model (joint

client-side model and server-side model) consistent at the end of each epoch. However, the

model synchronization brings the computation and communication overhead at the client-side.

This would be significant if the number of clients grows significantly. In this regard, this paper

studies the SFL without client-side model synchronization. The resulting model architecture is

calledMulti-head Split Learning (MHSL). We summarize our contributions under two research

questions stated in the following:

189 CERC 2021



E-Learning and Competences

1.1. Our contributions

RQ1 Can we allow splitfed learning without client-side model synchronization?

We study the feasibility of MHSL. Our empirical studies on IID distributed MNIST and

CIFAR-10 data among five clients find a similar result in MHSL and SFL. Moreover, SFL is

slightly (1%-2%) better than MHSL on the MNIST. For CIFAR-10, SFL is better by around

10% than MHSL at the 20 global epoch. However, both SFL and MHSL performance is

below 60% (low), thus requires further studies to make any conclusion.

RQ2 Is there any effect on the overall performance if we change the number of layers at the

client-side model portions?

Performance of SFL and MHSL under different combinations of layers dispersed at the

client-side, and the server-side behaved identically. No significant deviation in model

convergence and their performance are observed for any of the client-side and the server-

side model’s combinations in our experiments.

2. Experiment setup

For the experiment purpose, we choose SplitFedV2 in this paper. This makes our analysis more

focused on the split learning side. Moreover, we study if the federated learning part can be

removed from the SFL, resulting in Multi-head Split Learning (MHSL). The overall architecture

of MHSL is depicted in Figure 1. The model𝑊 is split into two portions; client-side model𝑊𝑐

portion and server-side model𝑊𝑠 portion. For the clients, their models are represented by𝑊 𝑖
𝑐 ,

where 𝑖 ∈ ı1, 2, … , 𝑁# is the client’s label. The global model𝑊 is formed by concatenating the

𝑊𝑐 and𝑊𝑠 , i.e., [𝑊𝑐𝑊𝑠] once the training completes.

How the final full model is formed in Multi-head Split Learning? Unlike SFL, MHSL

removes the fed server and the synchronization of 𝑊 𝑖
𝑐 at the end of each epoch. During the

whole training,𝑊 𝑖
𝑐 are trained independently by their clients with the server. But, at the end of

the whole training, the global full model𝑊 is constructed from any one𝑊 𝑖
𝑐 and concatenating

it with 𝑊𝑠 . To enable this way of constructing the final trained model, we keep the test data

the same over all clients and only keep the training data localized. Thus, if the test results for

all clients are similar, then it is reasonable to pick any 𝑊 𝑖
𝑐 for the final full model.

Our program is written using python 3.7.6 and PyTorch 1.2.0 library. The experiments are

conducted in a system having a Tesla P100-PCI-E-16GB GPUmachine. We observe the training

and testing loss and accuracy at each global epoch (once the server trains with all the activation

vectors received from all clients). We consider the client-level performance. All the clients were

selected to participate at least once at a global epoch without repetition for the current setup.

2.1. Dataset

For our experiments, two widely used image datasets, namely, MNIST and CIFAR-10, are se-

lected. Moreover, this dataset maintains the closeness of our results with the reported results

in the original paper SplitFedV2. MNIST [11] dataset consists of 60,000 images in the training

190CERC 2021



E-Learning and Competences

Figure 1: Multi-head split learning architecture.

Table 1

Datasets used in our experiment setup.

Dataset Training samples Testing samples Image size

MNIST 60,000 10,000 28 × 28

CIFAR-10 50,000 10,000 32 × 32

dataset and 10,000 images in the test dataset. The dimension of each of the images in theMNIST

dataset is 784 (28×28) in grayscale. Another dataset used for experimentation is CIFAR-10 [12],

consisting of 50,000 images in the training set and 10,000 images in the test dataset. Each im-

age corresponds to the dimension of 3072 (32 × 32). For the summary, refer to Table 1. Both of

the datasets have ten classes for prediction. For the experimentation, color random horizontal

flipping, random rotation, normalization, and cropping onMNIST and CIFAR-10 are conducted

to avoid the problem of over-fitting. In addition, for all our experiments, data is assumed to be

uniformly and identically distributed amongst five clients.

2.2. Models

ResNet-18 [13] network architecture is used for the primary experimentation on the MNIST

and CIFAR-10 datasets. The ResNet-18 network was selected because of the discrete łblocks"

structure in every layer of the architecture [13], and it is a standardmodel for image processing.

Resnet-18 blocks were used to split the Resnet-18 between the clients and server to form the

client-side and server-side models. Each block performs an operation; an operation in block

refers to passing an image through a convolution, batch normalization, and a ReLU activation

excluding the last operation in the block. Resnet-18 in the experiment is initialized with a

learning rate of 1e-4, and the mini-batch size of BN was set to 64 based on the initial experi-

mentation 3.1. In addition, the first convolutional layer kernel size was set to 7x7, remaining

convolutional layers used 3x3 kernels as described in the model architecture Table 2.

191 CERC 2021



E-Learning and Competences

Table 2

Model Architecture used in the experimental setup.

Architecture No. of parameters Layers Kernel size

ResNet18 [13] 11.7 million 18 (7 × 7), (3 × 3)

(a) (b)

Figure 2: Train and test Accuracy of ResNet18 model on MNIST and CIFAR-10 in the centralized

training.

3. Results

This section presents the empirical results on theMNIST and CIFAR-10 datasets. The results are

divided into three parts. First, section 3.1 offers results obtained while training the centralized

version of the Resnet-18 on the CIFAR-10 and MNIST datasets. In this section 3.2, we compare

the results of SplitFedV2 and MHSL on MNIST and CIFAR-10 datasets. For both datasets, we

consider five clients to have comparable results, as shown in SplitFedv2 research [8]. In both the

architecture, we have kept the initial layer inside the clients (as a client-sidemodel portion), and

the rest of the layers reside in the server (as a server-side model portion). Finally, in section 3.3,

we have presented our empirical results indicating the impact of the model split on the overall

performance of the ResNet-18 model.

3.1. Baseline result

For the baseline, MNIST and CIFAR-10 are subjected to ResNet-18 model architecture. For

both the datasets, data-augmentation techniques are the same as discussed in the section 2.1.

Training of the ResNet-18 model is done in a centralized manner, i.e., the whole model resided

in the server without any split, and all data are available to the server. The convergence curves

of both the train and test accuracies for both datasets are shown in Figure 2.

3.2. Experiment1: Corresponding to RQ1

This section evaluated the impact of client-side aggregation by splitting the model on the first

layer. The very first layer reside at the client-side (client-side model portion) and the remaining

on the server-side (server-sidemodel portion). Experimental results in terms of test accuracy on

MNIST and CIFAR-10 dataset with and without client-side aggregation are shown in Figure 3.

192CERC 2021



E-Learning and Competences

(a) (b)

Figure 3: Test accuracy with client side aggregation (i.e., SFL) and without client-side aggregation (i.e.,

MHSL) on (a) MNIST and (b) CIFAR-10.

(a) (b)

Figure 4: Test accuracy of ResNet-18 on MNIST (a) with client-side aggregation (i.e., SFL) and (b)

without client-side aggregation (i.e., MHSL).

Table 3

Test Accuracy of ResNet-18 with the model split on different layers.

Split at layer L1 L2 L3 L4 L5 L6 L7 L8 L9

Model with Client-Side Aggregation 98.54 98.46 98.56 98.54 98.37 98.21 97.84 98.13 98.25

Model without Client-Side Aggregation 97.23 97.36 96.98 96.71 96.79 96.92 96.93 96.95 97.19

From the results in Figure 3(a), it is evident that results are similar for SFL and MHSL. For

CIFAR-10, the performance for both SFL and MHSL are quite lower than the baseline, but the

result is better in the case of MNIST.

3.3. Experiment2: Corresponding to RQ2

This section evaluated the impact of the model split on the overall performance. Test accuracy

on MNIST is shown in Figure 4.

From Table 3, it is evident that SFL and MHSL show a comparable test performance. Overall,

our empirical results (both under RQ1 and RQ2 demonstrate that Multi-head Split Learning

193 CERC 2021



E-Learning and Competences

(MHSL) is feasible, and there is no significant impact on the performance due to the model split

at the various layers of the ResNet-18 model.

4. Conclusion and future works

This paper studied SplitFed Learning (SFL) without client-side model synchronization called

Multi-head Split Learning (MHSL). Our experiments with ResNet-18 on the MNIST dataset

demonstrated that MHSL is feasible. In other words, our studies suggested that the fed server

and the client-side model synchronization can be removed from SFL to reduce the communi-

cation and computation overhead at the client side. In addition, our experiments with different

combinations of model portion size at the client-side and the server-side found a negligible

effect on the overall performance. This suggests the possibility of dynamic allocation of lay-

ers to the clients based on the computation power without any significant loss in the model

performance.

This paper is the first step to find the feasibility of MHSL and the effect of the split network

portion sizes to the overall performance. In the future, it will be interesting to see more ex-

haustive experiments and theoretical analysis on the convergence guarantee with the different

models, various datasets, and under a larger number of clients in the experimental setup. Also,

experimenting with the setup for non-IID data setup will be another research direction that

can be explored.

Acknowledgments

This research was conducted with the financial support of the ADVANCE CRT PHD pro-

gramme within the ADAPT SFI Research Centre at Munster Technological University. The

ADAPT SFI Centre for Digital Media Technology is funded by Science Foundation Ireland

through the SFI Research Centres Programme and is co-funded under the European Regional

Development Fund (ERDF) through Grant 13/RC/2106. The project was partially supported

by the Horizon 2020 projects STOP Obesity Platform under Grant Agreement No. 823978 and

ITFLOWS under Grant Agreement No. 882986.

References

[1] G. Chassang, The impact of the eu general data protection regulation on scientific research, ecancermedi-

calscience 11 (2017).

[2] A. Azzi, The challenges faced by the extraterritorial scope of the general data protection regulation, J. Intell.

Prop. Info. Tech. Elec. Com. L. 9 (2018) 126.

[3] A. Qi, G. Shao, W. Zheng, Assessing china’s cybersecurity law, Computer Law & Security Review 34 (2018)

1342ś1354.

[4] Q. Yang, Y. Liu, T. Chen, Y. Tong, Federated machine learning: Concept and applications, ACM Transactions

on Intelligent Systems and Technology (TIST) 10 (2019) 1ś19.

[5] J. Konečnỳ, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, D. Bacon, Federated learning: Strategies for

improving communication efficiency, arXiv preprint arXiv:1610.05492 (2016).

[6] M. G. Poirot, P. Vepakomma, K. Chang, J. Kalpathy-Cramer, R. Gupta, R. Raskar, Split learning for collaborative

deep learning in healthcare, arXiv preprint arXiv:1912.12115 (2019).

194CERC 2021



E-Learning and Competences

[7] T. Li, A. K. Sahu, A. Talwalkar, V. Smith, Federated learning: Challenges, methods, and future directions, IEEE

Signal Processing Magazine 37 (2020) 50ś60.

[8] C. Thapa, M. A. P. Chamikara, S. Camtepe, Splitfed: When federated learning meets split learning, arXiv

preprint arXiv:2004.12088 (2020).

[9] A. Singh, P. Vepakomma, O. Gupta, R. Raskar, Detailed comparison of communication efficiency of split

learning and federated learning, arXiv preprint arXiv:1909.09145 (2019).

[10] C. Thapa, M. A. P. Chamikara, S. Camtepe, Advancements of federated learning towards privacy preservation:

from federated learning to split learning, arXiv preprint arXiv:2011.14818 (2020). https://arxiv.org/pdf/2011.

14818.pdf.

[11] Y. LeCun, The mnist database of handwritten digits, http://yann. lecun. com/exdb/mnist/ (1998).

[12] A. Krizhevsky, G. Hinton, et al., Learning multiple layers of features from tiny images (2009).

[13] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: Proceedings of the IEEE

conference on computer vision and pattern recognition, 2016, pp. 770ś778.

195 CERC 2021


